



# Principles of Fermentation Technology

**Third Edition** 

Peter F. Stanbury, Allan Whitaker and Stephen J. Hall





Principles of Fermentation Technology Page left intentionally blank

## Principles of Fermentation Technology

THIRD EDITION

Peter F. Stanbury

Allan Whitaker

Stephen J. Hall



AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier



Butterworth-Heinemann is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017, 1995, 1984 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

#### Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

### Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

#### **British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library

ISBN: 978-0-08-099953-1

For information on all Butterworth-Heinemann publications visit our website at https://www.elsevier.com/



Publisher: Joe Hayton Acquisition Editor: Fiona Geraghty Editorial Project Manager: Maria Convey Production Project Manager: Nicky Carter Designer: Maria Inês Cruz

Typeset by Thomson Digital

This book is dedicated to all the staff, past and present, of the Department of Biological and Environmental Sciences, University of Hertfordshire. Page left intentionally blank

## Contents

| Acknowledg | gmer | nts                                                    | xvii |
|------------|------|--------------------------------------------------------|------|
| CHAPTER    | 1    | An Introduction to Fermentation Processes              | 1    |
|            | The  | Range of Fermentation Processes                        | 1    |
|            |      | Microbial Biomass                                      | 3    |
|            |      | Microbial Enzymes                                      | 3    |
|            |      | Microbial Metabolites                                  | 3    |
|            |      | Recombinant Products                                   | 8    |
|            |      | Transformation Processes                               | 8    |
|            | The  | Chronological Development of the Fermentation Industry | 9    |
|            | The  | Component Parts of a Fermentation Process              |      |
|            | Ref  | erences                                                | 19   |
| CHAPTER    | 2    | Microbial Growth Kinetics                              | 21   |
|            | Bate | ch Culture                                             | 21   |
|            |      | Exponential Phase                                      | 21   |
|            |      | Deceleration and Stationary Phases                     | 25   |
|            | Con  | tinuous Culture                                        |      |
|            |      | Multistage Systems                                     | 40   |
|            |      | Feedback Systems                                       | 41   |
|            |      | Comparison of Batch and Continuous Culture             |      |
|            |      | in Industrial Processes                                | 44   |
|            |      | Comparison of Batch and Continuous Culture             |      |
|            |      | as Investigative Tools                                 | 55   |
|            | Fed  | -Batch Culture                                         | 58   |
|            |      | Variable Volume Fed-Batch Culture                      | 58   |
|            |      | Fixed Volume Fed-Batch Culture                         | 61   |
|            |      | Fed-Batch Culture at a Constant Specific Growth Rate   | 62   |
|            |      | Cyclic Fed-Batch Culture                               | 62   |
|            |      | Application of Fed-Batch Culture                       | 63   |
|            |      | Examples of the Use of Fed-Batch Culture               | 65   |
|            | Ref  | erences                                                | 68   |
| CHAPTER    | 3    | The Isolation and Improvement of Industrially          |      |
|            |      | Important Microorganisms                               | 75   |
|            | Isol | ation of Industrially Important Microorganisms         | 75   |
|            |      | Isolation Methods Utilizing Selection of the Desired   |      |
|            |      | Characteristic                                         | 78   |

|         | Isolation Methods not Utilizing Selection of the Desired     |     |
|---------|--------------------------------------------------------------|-----|
|         | Characteristic-from the "Waksman Platform" to the 1990s      | 81  |
|         | Screening Methods and High Throughput Screening              | 84  |
|         | Return of Natural Products                                   | 90  |
|         | Broadening the Base of the Discovery Process                 |     |
|         | and Maximizing Gene Expression                               | 91  |
|         | Improvement of Industrial Microorganisms                     | 98  |
|         | Improvement of Strains Producing Primary                     |     |
|         | Biosynthetic Products                                        | 99  |
|         | Improvement of Strains Producing Secondary                   |     |
|         | Biosynthetic Products                                        | 150 |
|         | Summary                                                      | 194 |
|         | References                                                   | 194 |
|         |                                                              |     |
| CHAPTER | 4 Media for Industrial Fermentations                         | 213 |
|         | Introduction                                                 | 213 |
|         | Typical Media                                                | 215 |
|         | Medium Formulation                                           | 215 |
|         | Water                                                        | 220 |
|         | Energy Sources                                               | 220 |
|         | Carbon Sources                                               | 221 |
|         | Factors Influencing the Choice of Carbon Source              | 221 |
|         | Examples of Commonly Used Carbon Sources                     | 222 |
|         | Nitrogen Sources                                             | 227 |
|         | Examples of Commonly Used Nitrogen Sources                   | 227 |
|         | Factors Influencing the Choice of Nitrogen Source            | 229 |
|         | Minerals                                                     | 231 |
|         | Chelators                                                    | 233 |
|         | Growth Factors                                               | 234 |
|         | Nutrient Recycle                                             | 234 |
|         | Buffers                                                      | 234 |
|         | The Addition of Precursors and Metabolic Regulators to Media | 235 |
|         | Precursors                                                   | 235 |
|         | Inhibitors                                                   | 235 |
|         | Inducers                                                     | 237 |
|         | Oxygen Requirements                                          | 239 |
|         | Fast Metabolism                                              | 239 |
|         | Rheology                                                     | 239 |
|         | Antifoams                                                    | 240 |
|         | Medium Optimization                                          | 242 |
|         | Animal Cell Media                                            | 251 |

|         | The Development of Basal Media                               | .251  |
|---------|--------------------------------------------------------------|-------|
|         | Serum-Free, Animal-Component Free, Protein-Free,             |       |
|         | and Chemically Defined Media                                 | .252  |
|         | References                                                   | .260  |
| CHAPTER | 5 Sterilization                                              | .273  |
| •••••   | Introduction                                                 | 273   |
|         | Medium Sterilization                                         | .275  |
|         | Design of Batch Sterilization Processes                      | .285  |
|         | Calculation of the Del Factor During Heating and Cooling     | .286  |
|         | Calculation of the Holding Time at Constant Temperature      | .287  |
|         | Richards' Rapid Method for the Design of Sterilization       |       |
|         | Cycles                                                       | .287  |
|         | Scale Up and Optimization of a Batch Sterilization Process   | .288  |
|         | An Alternative Approach to Sterilization Kinetics: D, Z,     |       |
|         | and F Values                                                 | .292  |
|         | Variation in the Values of Sterilization Kinetic "Constants" | .298  |
|         | Methods of Batch Sterilization                               | . 299 |
|         | Design of Continuous Sterilization Processes                 | .300  |
|         | Sterilization of the Fermenter                               | .307  |
|         | Sterilization of the Feeds                                   | . 307 |
|         | Sterilization of Liquid Wastes                               | .308  |
|         | Sterilization by Filtration                                  | .311  |
|         | Theory of Nonfixed Pore or Depth Filters                     | .317  |
|         | Filter Sterilization of Liquids                              | .319  |
|         | Filter Sterilization of Fermenter Inlet Air                  | .326  |
|         | Sterilization of Fermenter Exhaust Air                       | .327  |
|         | Vessel Vent Filters                                          | .330  |
|         | References                                                   | . 330 |
| CHAPTER | 6 Culture Preservation and Inoculum Development              | .335  |
|         | Preservation of Industrially Important Cell Cultures and     |       |
|         | Microorganisms                                               | .335  |
|         | Storage at Reduced Temperature                               | .335  |
|         | Storage in a Dehydrated Form                                 | .337  |
|         | Quality Control of Preserved Stock Cultures                  | .337  |
|         | Inoculum Development                                         | .342  |
|         | Criteria for the Transfer of Inoculum                        | .348  |
|         | Development of Inocula for Animal Cell Processes             | .351  |
|         | Development of Inocula for Yeast Processes                   | .358  |
|         | Baker's Yeast                                                | .358  |

| Brewing                                |                         |
|----------------------------------------|-------------------------|
| Fuel Ethanol                           |                         |
| Development of Inocula for Unicellular | r Bacterial Processes   |
| Development of Inocula for Mycelial P  | rocesses                |
| Sporulation on Solidified Media        |                         |
| Sporulation on Solid Media             |                         |
| Sporulation in Submerged Culture       |                         |
| Use of the Spore Inoculum              |                         |
| Inoculum Development for Vegetat       | tive Fungi376           |
| Effect of the Inoculum on the Mor      | phology of Filamentous  |
| Organisms in Submerged Culture         |                         |
| Aseptic Inoculation of Plant Fermenter | s                       |
| Inoculation from a Laboratory Ferr     | menter or a Spore       |
| Suspension Vessel                      |                         |
| Inoculation of Disposable Reactors     | s and use of Disposable |
| Connectors                             |                         |
| Inoculation from a Plant Fermenter     | r                       |
| References                             |                         |
|                                        |                         |

| CHAPTER | 7 Design of a Fermenter                                | 401 |
|---------|--------------------------------------------------------|-----|
|         | Introduction                                           | 401 |
|         | Basic Functions of a Fermenter                         | 402 |
|         | Aseptic Operation and Containment                      | 405 |
|         | Fermenter Body Construction                            | 409 |
|         | Construction Materials                                 | 409 |
|         | Temperature Control                                    | 415 |
|         | Aeration and Agitation                                 | 417 |
|         | Agitator (Impeller)                                    | 418 |
|         | Stirrer Glands and Bearings                            | 423 |
|         | Baffles                                                | 428 |
|         | Aeration System (Sparger)                              | 429 |
|         | Achievement and Maintenance of Aseptic Conditions      | 431 |
|         | Sterilization of the Fermenter                         | 432 |
|         | Sterilization of the Air Supply                        | 432 |
|         | Sterilization of the Exhaust Gas from a Fermenter      | 434 |
|         | Addition of Inoculum, Nutrients, and Other Supplements | 434 |
|         | Sampling                                               | 435 |
|         | Feed Ports                                             | 438 |
|         | Sensor Probes                                          | 438 |
|         | Foam Control                                           | 439 |
|         | Monitoring and Control of Various Parameters           | 441 |
|         |                                                        |     |

| Valves and Steam Traps                                       |
|--------------------------------------------------------------|
| Gate Valves                                                  |
| Globe Valves                                                 |
| Piston Valves                                                |
| Needle Valves                                                |
| Plug Valves                                                  |
| Ball Valves                                                  |
| Butterfly Valves                                             |
| Pinch Valves                                                 |
| Diaphragm Valves447                                          |
| Most Suitable Valve                                          |
| Check Valves                                                 |
| Pressure-Control Valves                                      |
| Pressure-Reduction Valves                                    |
| Pressure-Retaining Valves                                    |
| Safety Valves                                                |
| Steam Traps451                                               |
| Complete Loss of Contents from a Fermenter453                |
| Testing New Fermenters                                       |
| Scale-Up of Fermenters                                       |
| Other Fermentation Vessels                                   |
| Waldhof-Type Fermenter                                       |
| Acetators and Cavitators                                     |
| Tower or Bubble Column Fermenter                             |
| Cylindro-Conical Vessels                                     |
| Air-Lift Fermenters                                          |
| Deep-Jet Fermenter                                           |
| Cyclone Column                                               |
| Packed Towers, Biofilters, and Other Fixed Film Processes467 |
| Solid-State Fermenters                                       |
| Membrane Fermenters                                          |
| Single Use and Disposable Fermenters                         |
| Animal Cell Culture                                          |
| Stirred Fermenters                                           |
| Air-Lift Fermenters                                          |
| Radial Flow Fermenters                                       |
| Microcarriers                                                |
| Encapsulation474                                             |
| Hollow Fiber Chambers                                        |
| Packed Glass Bead Reactors                                   |
| Perfusion Cultures                                           |
| References                                                   |
| Further Reading                                              |

| CHAPTER | 8 Instrumentation and Control                    |     |
|---------|--------------------------------------------------|-----|
|         | Introduction                                     |     |
|         | Methods of Measuring Process Variables           |     |
|         | Temperature                                      |     |
|         | Flow Measurement and Control                     |     |
|         | Pressure Measurement                             |     |
|         | Pressure Control                                 |     |
|         | Safety Valves                                    |     |
|         | Agitator Shaft Power                             |     |
|         | Rate of Stirring                                 |     |
|         | Foam Sensing and Control                         |     |
|         | Weight                                           |     |
|         | Microbial Biomass                                |     |
|         | Measurement and Control of Dissolved Oxygen      |     |
|         | Inlet and Exit-Gas Analysis                      |     |
|         | pH Measurement and Control                       |     |
|         | Redox                                            |     |
|         | Carbon Dioxide Electrodes                        |     |
|         | On-Line Analysis of Other Chemical Factors       |     |
|         | Chemical and Ion-Specific Sensors                |     |
|         | Enzyme and Microbial Electrodes (Biosensors)     |     |
|         | Near Infrared Spectroscopy                       | 509 |
|         | Mass Spectrometers                               | 510 |
|         | Control Systems                                  | 510 |
|         | Manual Control                                   | 511 |
|         | Automatic Control                                |     |
|         | Combinations of Methods of Control               | 518 |
|         | Controllers                                      | 519 |
|         | More Complex Control Systems                     | 519 |
|         | Computer Applications in Fermentation Technology |     |
|         | Components of a Computer-Linked System           |     |
|         | Data Logging                                     |     |
|         | Data Analysis                                    |     |
|         | Process Control                                  |     |
|         | References                                       |     |
| CHAPTER | 9 Aeration and Agitation                         |     |
|         | Introduction                                     |     |

| •    | Addition and Agration                        | 551 |
|------|----------------------------------------------|-----|
| Intr | oduction                                     | 537 |
| Oxy  | gen Requirements of Industrial Fermentations | 537 |
| Oxy  | vgen Supply                                  | 547 |
| - ,  | 8 11 5                                       |     |

| Determination of <i>K</i> <sub>L</sub> <i>a</i> Values                          | 549 |
|---------------------------------------------------------------------------------|-----|
| Sulfite Oxidation Technique                                                     | 550 |
| Gassing-Out Techniques                                                          | 550 |
| Oxygen-Balance Technique                                                        | 555 |
| Fluid Rheology                                                                  | 557 |
| Bingham Plastic Rheology                                                        | 559 |
| Pseudoplastic Rheology                                                          |     |
| Dilatant Rheology                                                               |     |
| Casson Body Rheology                                                            |     |
| Factors Affecting <i>K</i> <sub>L</sub> <i>a</i> Values in Fermentation Vessels |     |
| Effect of Airflow Rate on <i>K</i> <sub>L</sub> <i>a</i>                        |     |
| Effect of the Degree of Agitation on $K_La$                                     |     |
| Effect of Medium and Culture Rheology on K <sub>L</sub> a                       |     |
| Effect of Foam and Antifoams on Oxygen Transfer                                 |     |
| Balance Between Oxygen Supply and Demand                                        |     |
| Controlling Biomass Concentration                                               |     |
| Controlling the Specific Oxygen Uptake Rate                                     | 594 |
| Scale-Up and Scale-Down                                                         | 594 |
| Influence of Scale-Down Studies                                                 |     |
| Approaches to Scale-Up of Aeration and Agitation                                |     |
| Scale-Up of Air-Lift Reactors                                                   | 607 |
| References                                                                      | 608 |

### CHAPTER 10 The Recovery and Purification of Fermentation

| Products                                          | 619 |
|---------------------------------------------------|-----|
| Introduction                                      | 619 |
| Removal of Microbial Cells and Other Solid Matter |     |
| Foam Separation (Floatation)                      |     |
| Precipitation                                     |     |
| Filtration                                        |     |
| Theory of Filtration                              |     |
| Use of Filter Aids                                |     |
| Continuous Filters                                |     |
| Cross-Flow Filtration (Tangential Filtration)     | 636 |
| Centrifugation                                    | 637 |
| Cell Aggregation and Flocculation                 | 639 |
| Range of Centrifuges                              | 640 |
| Cell Disruption                                   | 647 |
| Physicomechanical Methods                         | 647 |
| Chemical and Biological Methods                   | 651 |

|         | Liquid–Liquid Extraction                       |     |
|---------|------------------------------------------------|-----|
|         | Solvent Recovery                               | 657 |
|         | Two-Phase Aqueous Extraction                   |     |
|         | Reversed Micelle Extraction                    |     |
|         | Supercritical Fluid Extraction                 |     |
|         | Adsorption                                     |     |
|         | Removal of Volatile Products                   |     |
|         | Chromatography                                 |     |
|         | Adsorption Chromatography                      |     |
|         | Ion Exchange                                   |     |
|         | Gel Permeation                                 |     |
|         | Affinity Chromatography                        |     |
|         | Reverse Phase Chromatography (RPC)             |     |
|         | High Performance Liquid Chromatography (HPLC)  |     |
|         | Continuous Chromatography                      |     |
|         | Membrane Processes                             |     |
|         | Ultrafiltration and Reverse Osmosis            |     |
|         | Ultrafiltration                                |     |
|         | Reverse Osmosis                                | 670 |
|         | Liquid Membranes                               |     |
|         | Drying                                         | 671 |
|         | Crystallization                                | 673 |
|         | Whole Broth Processing                         | 674 |
|         | References                                     | 677 |
|         | Further Reading                                |     |
| CHAPTER | 11 Effluent Treatment                          |     |
|         | Introduction                                   |     |
|         | Sustainability                                 |     |
|         | Dissolved Oxygen Concentration as an Indicator |     |
|         | of Water Quality                               |     |
|         | Site Surveys                                   |     |
|         | Strengths of Fermentation Effluents            |     |
|         | Treatment and Disposal of Effluents            |     |
|         | Disposal                                       |     |
|         | Seas and Rivers                                | 694 |
|         | Lagoons (Oxidation Ponds)                      |     |
|         | Spray Irrigation                               |     |
|         | Landfilling                                    |     |
|         | Incineration                                   |     |
|         | Disposal of Effluents to Sewers                |     |

|           | Treatment Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|           | Physical Treatment69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                       |
|           | Chemical Treatment70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                       |
|           | Biological Treatment70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                       |
|           | Aerobic Processes70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                       |
|           | Anaerobic Treatment71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                       |
|           | Advanced or Tertiary Treatment71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                       |
|           | Constructed Wetlands71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                       |
|           | By-Products71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                       |
|           | Distilleries71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                       |
|           | Breweries71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                       |
|           | Amino Acid Wastes71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                       |
|           | Fuel Alcohol Wastes71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                       |
|           | References71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                       |
|           | Further Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                       |
|           | 12 The Dreduction of Heterologous Proteins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                       |
| UTAF I LN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                       |
|           | Introduction 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                       |
|           | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                       |
|           | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                      |
|           | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>27<br>2                                                                           |
|           | Introduction 72<br>Heterologous Protein Production by Bacteria 72<br>Cloning Vectors 73<br>Expression Vectors 73<br>The Maximulation of the Hest Pasterium 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25<br>27<br>2<br>3                                                                      |
|           | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>27<br>2<br>3<br>.4                                                                |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>27<br>22<br>3<br>4<br>0                                                           |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protain Secretion       75                                                                                                                                                                                                                                                                                                                                                                  | 25<br>7<br>2<br>3<br>4<br>0<br>1                                                        |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75                                                                                                                                                                                                                                                                                                                    | 25<br>7<br>2<br>3<br>4<br>0<br>1<br>5<br>6                                              |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75         Vectors Secretion       75         The Manipulation of the Host       75         The Manipulation of the Host       75                                                                                                                                                                                     | 25<br>27<br>23<br>40<br>15<br>67                                                        |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75         Protein Secretion       75         The Manipulation of the Host       75         Heterologous Protein Production by Mammalian Cell Cultures       75         Transient Game Expression       75                                                                                                            | 25<br>7<br>2<br>3<br>4<br>0<br>1<br>5<br>6<br>7<br>8                                    |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75         Protein Secretion       75         The Manipulation of the Host       75         Heterologous Protein Production by Mammalian Cell Cultures       75         Stable Care Expression       75                                                                                                               | 25<br>7<br>2<br>3<br>4<br>0<br>1<br>5<br>6<br>7<br>8<br>0                               |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75         Protein Secretion       75         The Manipulation of the Host       75         The Manipulation of the Host       75         Stable Gene Expression       76         Other Contributing Feators to the Success       76                                                                                  | 25<br>7<br>2<br>3<br>4<br>0<br>1<br>5<br>6<br>7<br>8<br>0                               |
|           | Introduction       72         Heterologous Protein Production by Bacteria       72         Cloning Vectors       73         Expression Vectors       73         The Manipulation of the Host Bacterium       74         Heterologous Protein Production by Yeast       75         Yeast Expression Vectors       75         Protein Secretion       75         The Manipulation of the Host       75         Protein Secretion       75         The Manipulation of the Host       75         Heterologous Protein Production by Mammalian Cell Cultures       75         Stable Gene Expression       76         Other Contributing Factors to the Success       76         of Mammalian Cell Culture Process       76 | 25<br>7<br>23<br>4<br>0<br>15<br>6<br>7<br>8<br>0                                       |
|           | Introduction72Heterologous Protein Production by Bacteria72Cloning Vectors73Expression Vectors73The Manipulation of the Host Bacterium74Heterologous Protein Production by Yeast75Yeast Expression Vectors75Protein Secretion75The Manipulation of the Host75Protein Secretion75The Manipulation of the Host75Heterologous Protein Production by Mammalian Cell Cultures75Stable Gene Expression76Other Contributing Factors to the Success76Pafarences76Pafarences76                                                                                                                                                                                                                                                   | 25<br>7<br>2<br>3<br>4<br>0<br>1<br>5<br>6<br>7<br>8<br>0<br>8<br>0<br>8<br>0<br>8<br>0 |
|           | Introduction72Heterologous Protein Production by Bacteria72Cloning Vectors73Expression Vectors73The Manipulation of the Host Bacterium74Heterologous Protein Production by Yeast75Yeast Expression Vectors75Protein Secretion75The Manipulation of the Host75Protein Secretion75The Manipulation of the Host75Heterologous Protein Production by Mammalian Cell Cultures75Stable Gene Expression76Other Contributing Factors to the Success76References76                                                                                                                                                                                                                                                               | 2572340156780<br>89                                                                     |

Page left intentionally blank

### Acknowledgments

The cover includes an image of the New Brunswick<sup>™</sup> BioFlo<sup>®</sup> 610 fermenter Copyright © 2015 Courtesy of Eppendorf AG, Germany.

We wish to thank the authors, publishers, and manufacturing companies listed below for allowing us to reproduce either original or copyright material:

### Authors

S. Abe (Fig. 3.15), A.W. Nienow (Figs. 7.10, 7.11, 9.15, 9.22, from *Trends in Biotechnology*, **8** (1990)); J.W. Richards (Figs. 5.3–5.6, 5.8, 7.18 and Table 5.2) from *Introduction to Industrial Sterilization*, Academic Press, London (1968), F.G. Shinskey (Fig. 8.11); R.M. Talcott (Figs. 10.11–10.13).

### Publishers and Manufacturing Companies

Academic Press, London and New York: Figs. 1.2, 4.5, 7.1, 7.9, 7.14, 7.45, 7.52, 7.57, 9.25, 10.6, 10.28, and Table 8.3 Alfa Laval Ltd., Camberley: Figs. 5.11, 5.12, 5.14, 10.16, 10.17, and 10.20

American Chemical Society: Figs. 7.43, 7.50

American Society for Microbiology: Figs. 3.52, 9.19

American Society for Testing and Materials: Fig. 6.24. Copyright ASTM, reprinted with permission

Applikon Biotechnology, Tewkesbury, UK: Fig. 7.16 and Table 7.5

Bioengineered Bugs: Fig. 6.19

Bioprocess International: Fig. 6.11

Bio/Technology: Table 3.8

Blackwell Scientific Publications Ltd: Figs. 1.1 and 2.10

British Mycological Society: Fig. 7.49

British Valve and Actuator Manufacturers Association: Figs. 7.28–7.35, 7.37 and 7.38

Butterworth-Heinemann: Figs. 6.23, 7.22, 7.25, Table 3.9

Canadian Chemical News, Ottawa: Fig. 10.36

Celltainer Biotech BV, The Netherlands: Fig. 6.8

Chapman and Hall: Fig 7.47

Chemineer UK, Derby, UK: Figs. 9.6 and 9.23

Chilton Book Company Ltd., Radnor, Pennsylvania, USA: Figs. 8.2, 8.3, 8.4, 8.5, 8.8, and 8.9

xvii

Colder Products Company: Figs. 6.25b and 6.26b

EMD Millipore Corporation: Fig. 6.26a

Eppendorf AG, Germany: Figs 7.5 and 7.6

European Molecular Biology Laboratory: Fig. 12.5

Marcel Dekker Inc.: Figs. 6.16-6.18

Elsevier: Figs. 2.2, 2.14, 3.41, 3.47, 3.48, 3.53, 3.54, 3.56, 5.5, 5.6, 5.15, 5.20, 6.15, 7.10, 7.11, 8.14, 8.22, 8.24, 8.26, 9.2, 9.22, 10.4, 10.9, 10.30. Tables 2.5, 5.6, 6.4, 9.6, 9.10

Ellis Horwood: Figs. 9.18 and 10.5. Table 9.3

Fedegari Group: Table 5.3

GE Healthcare Life Sciences: Fig. 6.25a

Inceltech LH, Reading: Fig. 7.17

International Thomson Publishing Services: Figs. 5.16, 6.13, 7.24

Institute of Chemical Engineering: Fig. 11.7

Institute of Water Pollution Control: Fig. 11.6

IRL Press: Figs. 4.3, 6.5, 8.28

Japan Society for Bioscience, Biotechnology and Agrochemistry: Fig. 3.25

Kluwer Academic Publications: Fig. 7.53, reprinted with permission from Vardar-Sukan, F. and Sukan, S.S. (1992) *Recent Advances in Biotechnology* 

MacMillan: Table 1.1

Marshall Biotechnology Ltd.: Fig. 7.23

McGraw Hill, New York: Fig. 7.27, 7.36, 8.23, 8.25, 10.10

Microbiology Research Foundation of Japan, Tokyo: Fig. 3.23

Microbiology Society: Figs. 3.27, 3.50, 3.51, and Tables 3.2 and 9.2

Nature Publishing Group: Fig. 3.3 and Table 3.10

New Brunswick Ltd., Hatfield, UK: Figs. 7.15, 7.26, and 7.56

New York Academy of Sciences: Figs. 2.14, 3.5, 3.6, 3.30

Oxford University Press: Figs. 3.34, 3.35, 12.7, 12.8, and Table 3.7

Pall Corporation, Portsmouth, UK: Figs. 5.19, 5.24, 5.25

Parker domnick hunter, Birtley, UK: Figs. 5.20, 5.21, 5.26, and 5.27

PubChem: Figs. 3.39, 3.40, and 3.55

Royal Society of Chemistry: Fig. 6.21

Sartorius Stedim UK Ltd., Epsom, UK: Figs. 6.7, 6.25c, 7.4, 7.7, 9.26

Science and Technology Letters, Northwood, UK: Fig. 9.24

Society for Industrial Microbiology, USA: Fig. 9.20

Southern Cotton Oil Company, Memphis, USA. Table 4.8

Spirax Sarco Ltd., Cheltenham, UK: Figs. 7.39-7.42

Springer. Figs. 3.31, 3.36, and 8.7. Tables 4.19 and 6.1

John Wiley and Sons: Figs. 5.17, 6.6, 6.10, 7.44, 7.51, 7.54, 8.11, 10.11–10.13, 10.21, 10.23, 10.24, 12.1, and Tables 2.6, 6.3, 12.3, 12.5

We also wish to thank Nick Hutchinson (Parker domnick hunter), Rob Smyth (Sartorius Stedim UK Ltd.), Geoff Simmons (Eppendorf UK Ltd.), Tom Watson (Pall Corporation), and particularly Maria Convey, our long-suffering Editorial Project Manager, and Nicky Carter, Production Project Manager.

Last but not least, we wish to express our thanks to Lesley Stanbury and Lorna Whitaker for their support, encouragement, and patience during the preparation of both this, and previous editions of "*Principles of Fermentation Technology*."

May 2016

Page left intentionally blank

## An introduction to fermentation processes

## 1

The term "fermentation" is derived from the Latin verb *fervere*, to boil, thus describing the appearance of the action of yeast on the extracts of fruit or malted grain. The boiling appearance is due to the production of carbon dioxide bubbles caused by the anaerobic catabolism of the sugar present in the extract. However, fermentation has come to have with different meanings to biochemists and to industrial microbiologists. Its biochemical meaning relates to the generation of energy by the catabolism of organic compounds, whereas its meaning in industrial microbiology tends to be much broader.

The catabolism of sugar is an oxidative process, which results in the production of reduced pyridine nucleotides, which must be reoxidized for the process to continue. Under aerobic conditions, reoxidation of reduced pyridine nucleotide occurs by electron transfer, via the cytochrome system, with oxygen acting as the terminal electron acceptor. However, under anaerobic condition, reduced pyridine nucleotide oxidation is coupled with the reduction of an organic compound, which is often a subsequent product of the catabolic pathway. In the case of the action of yeast on fruit or grain extracts, NADH is regenerated by the reduction of pyruvic acid to ethanol. Different microbial taxa are capable of reducing pyruvate to a wide range of end products, as illustrated in Fig. 1.1. Thus, the term fermentation has been used in a strict biochemical sense to mean an energy-generation process in which organic compounds act as both electron donors and terminal electron acceptors.

The production of ethanol by the action of yeast on malt or fruit extracts has been carried out on a large scale for many years and was the first "industrial" process for the production of a microbial metabolite. Thus, industrial microbiologists have extended the term fermentation to describe any process for the production of product by the mass culture of a microorganism. Brewing and the production of organic solvents may be described as fermentation in both senses of the word but the description of an aerobic process as a fermentation is obviously using the term in the broader, microbiological, context and it is in this sense that the term is used in this book.

### THE RANGE OF FERMENTATION PROCESSES

There are five major groups of commercially important fermentations:

- 1. Those that produce microbial cells (or biomass) as the product.
- **2.** Those that produce microbial enzymes.





Pyruvate formed by the catabolism of glucose is further metabolized by pathways which are characteristic of particular organisms and which serve as a biochemical aid to identification. End products of fermentations are italicized (Dawes & Large, 1982). A, Lactic acid bacteria (Streptococcus, Lactobacillus); B, Clostridium propionicum; C, Yeast, Acetobacter, Zymomonas, Sarcina ventriculi, Erwinia amylovora; D, Enterobacteriaceae (coli-aerogenes); E, Clostridia; F, Klebsiella; G, Yeast; H, Clostridia (butyric, butylic organisms); I, Propionic acid bacteria.

- **3.** Those that produce microbial metabolites.
- **4.** Those that produce recombinant products.
- **5.** Those that modify a compound that is added to the fermentation—the transformation process.

The historical development of these processes will be considered in a later section of this chapter, but it is first necessary to include a brief description of the five groups.

2

3

### MICROBIAL BIOMASS

The commercial production of microbial biomass may be divided into two major processes: the production of yeast to be used in the baking industry and the production of microbial cells to be used as human food or animal feed (single-cell protein). Bakers' yeast has been produced on a large scale since early 1900s and yeast was produced as human food in Germany during the First World War. However, it was not until the 1960s that the production of microbial biomass as a source of food protein was explored to any great depth. As a result of this work, reviewed briefly in Chapter 2, a few large-scale continuous processes for animal feed production were established in the 1970s. These processes were based on hydrocarbon feedstocks, which could not compete against other high protein animal feeds, resulting in their closure in the late 1980s (Sharp, 1989). However, the demise of the animal feed biomass fermentation was balanced by ICI plc and Rank Hovis McDougal establishing a process for the production of fungal biomass for human food. This process was based on a more stable economic platform and has been a significant economic success (Wiebe, 2004).

### MICROBIAL ENZYMES

Enzymes have been produced commercially from plant, animal, and microbial sources. However, microbial enzymes have the enormous advantage of being able to be produced in large quantities by established fermentation techniques. Also, it is infinitely easier to improve the productivity of a microbial system compared with a plant or an animal one. Furthermore, the advent of recombinant DNA technology has enabled enzymes of animal origin to be synthesized by microorganisms (see Chapter 12). The uses to which microbial enzymes have been put are summarized in Table 1.1, from which it may be seen that the majority of applications are in the food and related industries. Enzyme production is closely controlled in microorganisms and in order to improve productivity these controls may have to be exploited or modified. Such control systems as induction may be exploited by including inducers in the medium (see Chapter 4), whereas repression control may be removed by mutation and recombination techniques. Also, the number of gene copies coding for the enzyme may be increased by recombinant DNA techniques. Aspects of strain improvement are discussed in Chapter 3.

### MICROBIAL METABOLITES

The growth of a microbial culture can be divided into a number of stages, as discussed in Chapter 2. After the inoculation of a culture into a nutrient medium there is a period during which growth does not appear to occur; this period is referred as the lag phase and may be considered as a time of adaptation. Following a period during which the growth rate of the cells gradually increases, the cells grow at a constant maximum rate and this period is known as the log, or exponential, phase. Eventually, growth ceases and the cells enter the so-called stationary phase. After a further

| Industry              | Application                                                                                                                                                  | Enzyme                      | Source           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|
| Baking and<br>milling | Reduction of dough viscosity,<br>acceleration of fermentation,<br>increase in loaf volume,<br>improvement of crumb softness,<br>and maintenance of freshness | Amylase                     | Fungal           |
|                       | Improvement of dough texture,<br>reduction of mixing time, increase<br>in loaf volume                                                                        | Protease                    | Fungal/bacterial |
| Brewing               | Mashing                                                                                                                                                      | Amylase                     | Fungal/bacterial |
|                       | Chill proofing                                                                                                                                               | Protease                    | Fungal/bacterial |
|                       | Improvement of fine filtration                                                                                                                               | β-Glucanase                 | Fungal/bacterial |
| Cereals               | Precooked baby foods, breakfast foods                                                                                                                        | Amylase                     | Fungal           |
| Chocolate and cocoa   | Manufacture of syrups                                                                                                                                        | Amylase                     | Fungal/bacterial |
| Coffee                | Coffee bean fermentation                                                                                                                                     | Pectinase                   | Fungal           |
|                       | Preparation of coffee concentrates                                                                                                                           | Pectinase,<br>hemicellulase | Fungal           |
| Confectionery         | Manufacture of soft center candies                                                                                                                           | Invertase,<br>pectinase     | Fungal/bacterial |
| Cotton                | Low temperature processing                                                                                                                                   | Pectate lyase               | Fungal           |
| Corn syrup            | Manufacture of high-maltose<br>syrups                                                                                                                        | Amylase                     | Fungal           |
|                       | Production of low D.E. syrups                                                                                                                                | Amylase                     | Bacterial        |
|                       | Production of glucose from corn syrup                                                                                                                        | Amyloglycosidase            | Fungal           |
|                       | Manufacture of fructose syrups                                                                                                                               | Glucose<br>isomerase        | Bacterial        |
| Dairy                 | Manufacture of protein<br>hydrolysates                                                                                                                       | Protease                    | Fungal/bacterial |
|                       | Stabilization of evaporated milk                                                                                                                             | Protease                    | Fungal           |
|                       | Production of whole milk<br>concentrates, ice cream, and<br>frozen desserts                                                                                  | Lactase                     | Yeast            |
|                       | Curdling milk                                                                                                                                                | Protease                    | Fungal/bacterial |
| Eggs, dried           | Glucose removal                                                                                                                                              | Glucose oxidase             | Fungal           |
| Fruit juices          | Clarification                                                                                                                                                | Pectinases                  | Fungal           |
|                       | Oxygen removal                                                                                                                                               | Glucose oxidase             | Fungal           |
| Laundry               | Detergents                                                                                                                                                   | Protease, lipase            | Bacterial        |
| Leather               | Dehairing, baiting                                                                                                                                           | Protease                    | Fungal/bacterial |
| Meat                  | Tenderization                                                                                                                                                | Protease                    | Fungal           |
| Paper                 | Removal of wood waxes                                                                                                                                        | Lipase                      | Fungal           |
| Pharmaceutical        | Digestive aids                                                                                                                                               | Amylase,<br>protease        | Fungal           |

 Table 1.1 Commercial Applications of Enzymes

| Industry                | Application                        | Enzyme                           | Source           |
|-------------------------|------------------------------------|----------------------------------|------------------|
|                         | Antiblood clotting                 | Streptokinase                    | Bacterial        |
|                         | Various clinical tests             | Numerous                         | Fungal/bacterial |
|                         | Biotransformations                 | Numerous                         | Fungal/bacterial |
| Photography             | Recovery of silver from spent film | Protease                         | Bacterial        |
| Protein<br>hydrolysates | Manufacture                        | Proteases                        | Fungal/bacterial |
| Soft drinks             | Stabilization                      | Glucose oxidase,<br>catalase     | Fungal           |
| Textiles                | Desizing of fabrics                | Amylase                          | Bacterial        |
| Vegetables              | Preparation of purees and soups    | Pectinase,<br>amylase, cellulase | Fungal           |

Table 1.1 Commercial Applications of Enzymes (cont.)

Modified from Boing (1982).

period of time, the viable cell number declines as the culture enters the death phase. As well as this kinetic description of growth, the behavior of a culture may also be described according to the products that it produces during the various stages of the growth curve. During the log phase of growth, the products produced are either anabolites (products of biosynthesis) essential to the growth of the organism and include amino acids, nucleotides, proteins, nucleic acids, lipids, carbohydrates, etc. or are catabolites (products of catabolism) such as ethanol and lactic acid, as illustrated in Fig. 1.1. These products are referred as the primary products of metabolism and the phase in which they are produced (equivalent to the log, or exponential phase) as the trophophase (Bu'Lock et al., 1965).

Many products of primary metabolism are of considerable economic importance and are being produced by fermentation, as illustrated in Table 1.2. The synthesis of anabolic primary metabolites by wild-type microorganisms is such that their production is sufficient to meet the requirements of the organism. Thus, it is the task of the industrial microbiologist to modify the wild-type organism and to provide cultural conditions to improve the productivity of these compounds. This has been achieved very successfully, over many years, by the selection of induced mutants, the use of recombinant DNA technology, and the control of the process environment of the producing organism. This is exemplified by the production of amino acids where productivity has been increased by several orders of magnitude. However, despite these spectacular achievements, microbial processes have only been able to compete with the chemical industry for the production of relatively complex and high value compounds. In recent years, this situation has begun to change. The advances in metabolic engineering arising from genomics, proteomics, and metabolomics have provided new powerful techniques to further understand the physiology of "over-production" and to reengineer microorganisms to "over-produce" end products and intermediates of primary metabolism. Combined with the rising cost of petroleum and the desirability of environmentally friendly processes these advances are now facilitating the

| Primary Metabolite | Commercial Significance                              |
|--------------------|------------------------------------------------------|
| Ethanol            | "Active ingredient" in alcoholic beverages           |
|                    | Used as a motor-car fuel when blended with petroleum |
| Organic acids      | Various uses in the food industry                    |
| Glutamic acid      | Flavor enhancer                                      |
| Lysine             | Feed supplement                                      |
| Nucleotides        | Flavor enhancers                                     |
| Phenylalanine      | Precursor of aspartame, sweetener                    |
| Polysaccharides    | Applications in the food industry                    |
|                    | Enhanced oil recovery                                |
| Vitamins           | Feed supplements                                     |

**Table 1.2** Some Primary Products of Microbial Metabolism and TheirCommercial Significance

development of economic microbial processes for the production of bulk chemicals and feedstocks for the chemical industry (Otero & Nielsen, 2010; Van Dien, 2013). These aspects are considered later in this chapter and in Chapter 3.

During the deceleration and stationary phases, some microbial cultures synthesize compounds which are not produced during the trophophase and which do not appear to have any obvious function in cell metabolism. These compounds are referred to as the secondary compounds of metabolism and the phase in which they are produced (equivalent to the stationary phase) as the idiophase (Bu'Lock et al., 1965). It is important to realize that secondary metabolism may occur in continuous cultures at low growth rates and is a property of slow-growing, as well as nongrowing cells. When it is appreciated that microorganisms grow at relatively low growth rates in their natural environments, it is tempting to suggest that it is the idiophase state that prevails in nature rather than the trophophase, which may be more of a property of microorganisms in culture. The interrelationships between primary and secondary metabolism are illustrated in Fig. 1.2, from which it may be seen that secondary metabolites tend to be elaborated from the intermediates and products of primary metabolism. Although the primary biosynthetic routes illustrated in Fig. 1.2 are common to the vast majority of microorganisms, each secondary product would be synthesized by only a relatively few different microbial species. Thus, Fig. 1.2 is a representation of the secondary metabolism exhibited by a very wide range of different microorganisms. Also, not all microorganisms undergo secondary metabolism-it is common amongst microorganisms that differentiate such as the filamentous bacteria and fungi and the sporing bacteria but it is not found, for example, in the Enterobacteriaceae. Thus, the taxonomic distribution of secondary metabolism is quite different from that of primary metabolism. It is important to appreciate that the classification of microbial products into primary and secondary metabolites is a convenient, but in some cases, artificial system. To quote Bushell (1988), the classification "should not be allowed to act as a conceptual straitjacket, forcing the reader to consider all products

6





Primary catabolic routes are shown in heavy lines and secondary products are italicized (Turner, 1971).

as either primary or secondary metabolites." It is sometimes difficult to categorize a product as primary or secondary and the kinetics of synthesis of certain compounds may change depending on the cultural conditions.

The physiological role of secondary metabolism in the producer organism in its natural environment has been the subject of considerable debate and their functions include effecting differentiation, inhibiting competitors, and modulating host physiology. However, the importance of these metabolites to the fermentation industry is the effects they have on organisms other than those that produce them. Many secondary metabolites have antimicrobial activity, others are specific enzyme inhibitors, some are growth promoters and many have pharmacological properties (Table 1.3). Thus, the products of secondary metabolism have formed the basis of a major section

**Table 1.3** Some Secondary Products of Microbial Metabolism and Their

 Commercial Significance

| Secondary Metabolite                    | Commercial Significance    |  |
|-----------------------------------------|----------------------------|--|
| Penicillin, cephalosporin, streptomycin | Antibiotics                |  |
| Bleomycin, mitomycin                    | Anticancer agents          |  |
| Lovastatin                              | Cholesterol-lowering agent |  |
| Cyclosporine A                          | Immunosuppressant          |  |
| Avermectins                             | Antiparasitic agents       |  |

7

of the fermentation industry. As in the case for primary metabolites, wild-type microorganisms tend to produce only low concentrations of secondary metabolites, their synthesis being controlled by induction, quorum sensing, growth rate, feedback systems, and catabolite repression, modulated by a range of effector molecules (van Wezel & McDowall, 2011). The techniques which have been developed to improve secondary metabolite production are considered in Chapters 3 and 4.

### **RECOMBINANT PRODUCTS**

The advent of recombinant DNA technology has extended the range of potential fermentation products. Genes from higher organisms may be introduced into microbial cells such that the recipients are capable of synthesizing "foreign" proteins. These proteins are described as "heterologous" meaning "derived from a different organism." A wide range of microbial cells has been used as hosts for such systems including Escherichia coli, Saccharomyces cerevisiae, and filamentous fungi. Animal cells cultured in fermentation systems are also widely used for the production of heterologous proteins. Although the animal cell processes were based on microbial fermentation technology, a number of novel problems had to be solved—animal cells were considered extremely fragile compared with microbial cells, the achievable cell density is very much less than in a microbial process and the media are very complex. These aspects are considered in detail in Chapters 4 and 7. Products produced by such genetically engineered organisms include interferon, insulin, human serum albumin, factors VIII and IX, epidermal growth factor, calf chymosin, and bovine somatostatin. Important factors in the design of these processes include the secretion of the product, minimization of the degradation of the product, and control of the onset of synthesis during the fermentation, as well as maximizing the expression of the foreign gene. These aspects are considered in more detail later in this chapter and in Chapters 4 and 12.

### TRANSFORMATION PROCESSES

Microbial cells may be used to convert a compound into a structurally related, financially more valuable, compound. Because microorganisms can behave as chiral catalysts with high positional specificity and stereospecificity, microbial processes are more specific than purely chemical ones and enable the addition, removal, or modification of functional groups at specific sites on a complex molecule without the use of chemical protection. The reactions, which may be catalyzed include dehydrogenation, oxidation, hydroxylation, dehydration and condensation, decarboxylation, animation, deamination, and isomerization. Microbial processes have the additional advantage over chemical reagents of operating at relatively low temperatures and pressures without the requirement for potentially polluting heavy-metal catalysts. Although the production of vinegar is the oldest established microbial transformation process (conversion of ethanol to acetic acid), the majority of these processes involve the production of high-value compounds including steroids, antibiotics, and prostaglandins. However, the conversion of acetonitrile to acrylamide by *Rhodococcus rhodo-chrous* is an example of the technology being used in the manufacturing of a bulk chemical—20,000 metric tons being produced annually (Demain & Adrio, 2008).

A novel application of microbial transformation is the use of microorganisms to mimic mammalian metabolism. Humans and animals will metabolize drugs such that they may be removed from the body. The resulting metabolites may be biologically active themselves—either eliciting a desirable effect or causing damage to the organism. Thus, in the development of a drug it is necessary to determine the activity of not only the administered drug but also its metabolites. These studies may require significant amount of the metabolites and while it may be possible to isolate them from tissues, blood, urine, or faeces of the experimental animal, their concentration is often very low resulting in such approaches being time-consuming, expensive, and far from pleasant. Sime (2006) discussed the exploitation of the metabolites have been produced in small-scale fermentation, facilitating the investigation of their biological activity and/or toxicity.

The anomaly of the transformation fermentation process is that a large biomass has to be produced to catalyze a single reaction. Thus, many processes have been streamlined by immobilizing either the whole cells, or the isolated enzymes, which catalyze the reactions, on an inert support. The immobilized cells or enzymes may then be considered as catalysts, which may be reused many times.

### THE CHRONOLOGICAL DEVELOPMENT OF THE FERMENTATION INDUSTRY

The chronological development of the fermentation industry may be represented as five overlapping stages as illustrated in Table 1.4. The development of the industry prior to 1900 is represented by stage 1, where the products were confined to potable alcohol and vinegar. Although beer was first brewed by the ancient Egyptians, the first true large-scale breweries date from the early 1700s when wooden vats of 1500 barrels capacity were introduced (Corran, 1975). Even some process control was attempted in these early breweries, as indicated by the recorded use of thermometers in 1757 and the development of primitive heat exchangers in 1801. By the mid-1800s, the role of yeasts in alcoholic fermentation had been demonstrated independently by Cagniard-Latour, Schwann, and Kutzing but it was Pasteur who eventually convinced the scientific world of the obligatory role of these microorganisms in the process. During the late 1800s, Hansen started his pioneering work at the Carlsberg brewery and developed methods for isolating and propagating single yeast cells to produce pure cultures and established sophisticated techniques for the production of starter cultures. However, use of pure cultures did not spread to the British ale breweries and it is true to say that many of the small, traditional, ale-producing breweries still use mixed yeast cultures at the present time but, nevertheless, succeed in producing high quality products.